Purdue Research Foundation Lafayette, Ind
Spons Agency-Office of Education (DHEW), Washington. D.C. Bureau of Research
Bureau No-BR-7-E-053
Pub Date Feb 68
Grant-EG-1-7-070053-1908
Note-66p.
EDRS Price MF- $\$ 0.50$ HC- $\$ 2.72$
Descriptors ${ }^{* * A T T I T L D E S, ~ * E L E M E N T A R Y ~ S C H O O L ~ T E A C H E R S, ~ E V A L U A T I O N ~ T E C H N I Q L E S, ~ L A N G U A G E ~ A R T S, ~}$ *MATHEMATICS, SCIENCES, SOCIAL STUDIES, *TEACHER ATIITLDES, *TEACHER EDUCATION

Identifiers-Indiana Purdue University

The first objective of this research was to compare the attitudes of prospective elementary school teachers toward mathematics and three other areas-- language arts, science, and social studies--as academic disciplines and as future teaching areas. The second objective was to test the predictive validity of congruity theory when applied to Ss and concepts from elementary education. The third objective was to study semantic differential (SD) factor structure for the educational concepts and $\mathrm{S} s$ studied. The final objective was to describe the locations in semantic space of the meaning of each concept studied and to describe any cluster patterns among these meanings. Subjects in this study were prospective elementary school teachers on whom substantial efforts had been expended to enhance their mathematical sophistication. Each of the four sections of this report deals with those aspects of the research which bear on one of the objectives listed above. (RP)

THIS DOCUMENT HAS BEEN REPROOUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANILATION ORIGIMATIIMG II. POMNTS OF VIEW OR OPINOHS staitd do not mecessarliy represent officil offle of education POSIIIOM OR POLICY.

FINAL REPORT
Project No. 7-E-053
Grant No. OEG-1-7-070053-1908

$$
\text { PA } 24
$$

USE OF THE SEMANTIC DIFFERENTIAL TECHNIQUE

 TO MEASURE PROSPECTIVE ELEMENTARY SCHOOL TEACHER ATTITUDE TOWARD MATHEMATICS AND OTHER SUBJECTSU.S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
Bureau of Research

Final Report
Pro.ject No. 7-E-053
Grant No: OEG 1-7-070053-1908

Use of the Semantic Differential Technique to Measure Prospective Elementary School Teacher Attitude Toward Mathematics and Other Subjects

Robert B. Kane
Associate Professor of Mathematics and Education
Purdue Research Foundation-Purdue University
Lafayette, Indiana

The research reported herein was performed pursuant to a grant with the Office of Education, U.S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view. or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
U. S. DEPARTMENT OF

HEALITH, EDUCATION, AND WELFARE
Office of Education Bureau of Research

Contents

Summary 2
Introduction 5
The Factor Analysis Study 6
Methods 6
Findings and Analysis 7
Conclusions and Recommendations 19
The Attitude Study 21
Methods 22
Findings and Analysis 23
Conclusions and Recommendations 26
The Congruity Study 27
Methods 27
Findings and Analysis 28
Conclusions and Recommendations 33
The Distance Study Findings and Analysis 34
34
34
34
38
nafarences 39
Appendix 42
ERIC Report Resume 62
tables
1 SD Scales Selected Because of Their Factorial Stability 7
2 Proportion of Total Variance for Rotated Factors: First Administration 8
3 Proportion of Total Variance for Rotated Factors: Second Administration 9
4 Factor I Loadings \geq 30: First Administration 11
5 Factor I Loadings ≥ 30 : Second Administration 12

> Contents (contd)
Tables
6 Factor II Loadings ≥ 30 : First Administration 24
7 Factor II Loadings ≥ 30 : SecondAdministration15
8 Factor III Loadings $\geqslant 30$: First Administration 17
9 Factor III Loadings \geq 30: Second Administration 18
10 Frequency of Occurrence of Factor Loadings ≥ 0.30 on Factors for Which Scale Is Not Listed 19
11 Comparison of the Polarities of Pairs of Scales Whose Loadings Were ≥ 0.30 on Factor III 20
12 Means and Standard Deviations of Attitude Scores Toward Nine Concepts for 71 Prospective Elementary School Teachers 23
13 An Analysis of the Differences between Mean Attitude Scores for Concept Pairs of the Form X and Teaching Children X 24
14 ANOVA of Mean Attitude Scores Toward Four Academic Areas and Toward F'ive Teaching Categories 24
15 Differences Between Pairs of Mean Attitude Scores Toward Five Teaching Concepts 25
16 SD Scales Associated with Each Factor 28
17 Mean Factor Scores for Four Composite Concepts over Ss 29
18 Obtained Mean Component Concept Scores over Ss 30
19 Preiicted and Obtained Means for Composite Concepts 31
20 Correlations Between Obtained and Predicted Composite Concepts over Ss 32

```
Contents (contd)
```

Tables
21 Connotative Meanings of Selected Concepts as Defined by Locations in Semantic Space 35
22 Distances Between Selected Pairs of Concepis in Semantic Space 38
Figures
1 Centroids for Four Academic Disciplines 36
2 Centroids for Teaching Children and Four Concepts of the Form Teaching Children X 37

Suamary

This research was conducted in four stages: the factor analysis study, the attitude study, the congruty stuay, and the semantic distance study. Each of these s'udies is reported in a separate section of this docunent.
\checkmark The objective of the facror analysis study was to determine the factorial structure of semantic differential (SD) scales that have been accepted wicely as paradigms of the three SD factors na: ed evaluation, potency, and activity when these scales are used by prospective ele:antary teachers to rate educational concepts. The following questions vera raised:
2. Are evaluation, potency, and activity actors evident?
2. Are the factor loadings of scales that are paradigriss for each or these three factors consistant with their reputations for high and relatively pure loadings?
3. Do any of the scales reverse polarity when used by prospective elementary teachers to rate educational concepts?

Seventeen concepts related to elementary school classroom activities were selected. Each Concept was roted on 14 SD scales that had been used to study a variety or concepts rated by videly divergent Ss. Concept, scale, and the order of "positive" and "negative" adjectires within scales vere all randosized. Fown separate random concept presentation orders vere ewployed. A saple SD questionnaire is exhibited in the Appendix. Ss responded to the complete SD questionnaire during each of two administrations iline weeks apart. Thirty-four 14 is 14 correlation :atrices vere factor analyzed using principal components analysis with unities as estimates of comunality. Orthogonal rotations were completed. The proportion of total veriance accounted for by the first three factors renged from 0.462 to 0.664 .

Factor I was clearly the evaluative dimension but a traditional activity scale loaded heavily with the evaluative scales. Factor II was defined by two SD scales; one was traditionally an activity scale, the other a potency scale. This factor seews to be associated with intellectual or academic rigor rather than physical hardness or strength and thus might be thought of as a special kind of potency dizension. Factor III seems to be an activity dimension that includes the scale masculine-feminine. The positive polarity of this scale shifts frow "wasculine" to "feminine" across concepts rated. This study indicates that it is unwise to asswne that an SD scale has a fixed factorial content at the outset of an experiment. Similarly scale polarity may also vary across $\underline{\text { Ss }}$ and concepts. Experiments that use the SD with educational concepts should include factor analysis as an initial step in data analysis.

In the attitude study prospective elewentary school teachers' a.ttitudes toward nine concepis: four acadenic areas, toward teachine children and toward teaching children in each oif the acader.ic areas vere neasured with the SD evaluative scales that withstood the factor analysis stuay. Additionally, attitudes toward mathe: atics and teaching children :athe:atics were correlated with S's achievement in collegiate courses in mathenatics and teaching i.lathenetics.

Mean attitude torard each of the nine concents :ras significantly higher than neutrality. The difference between attitudes toward social studies and teaching children social sudies ras significant. Differences between all other pairs of the for:m (\underline{z}, teaching children x) were not signicicant. No significant diferences existed among attituces iowerd the four acade:ic areas. The mean âttitude toward teachinc children was significantly higher than any other mean attitude. Attitudes toward athe:atics and teaching children atheratics were positively related to achievement in collegiate mathewatics and mathenatics education courses. Of particular note is that attitude scores for wathematics, science, and teaching children in these areas are no less positive than attitudes toward language arts and social studies as disciplines and teaching areas.

A third study was designed to determine whether or not the principle of congruity (Osgood, Suci, and Tannenbaun: 1957) predicts composite concept meaning from component concept meanings in the event that \underline{S} s and concepts stem froi: elementary education. In brief, the congruity principle stipulates that if two component concepts of reasured aeaning such as Goldwater anc Republican are coiabined to foru a coimposite concept Goldwater Republican, the meaning of the composite may be predicted by applying the congruity formula to each di:sension of the semantic space.

The coinponent concepts studied included language arts, athe:atics, science, social studies, and teaching children. The composite concepts included all four combinations of the fore teaching childien x. The congruity model predicted Factor II with tore precision than either Factor I or III. Obtained measures for conosite concepts were systematically lower than predicted wesures. It appears that the prediction formula could be inprored by adding a constant, c, such that $-0.3 \leq c \leq-0.2$. Obtained and predicted factoi: scores vere correlated to inder their relationship independent of any systeratic error. These data suggest that the congruity formula does predict responses to coiposite concepts froin responses to co:ponent concepts.

The location of nine concepts in semantic 3-space was determined by generating an ordered triple of mean factor scores ($S_{I}, S_{I I}, S_{I I I}$)

Each ordered triple defines the centroid of the cloud of points (one from each S) for its respective concept. These centroids were plotted to yield a graphical display of the concepts' connotative meanings for the \underline{S} s involved. Distances between selected pairs of concepts were computed.

These data may be viewed as a dictionary of connotative meanings for the concepts studied among the prospective elementary teachers involved. In addition to providing a quantitative method of assigning meaning this analysis yields a measure of the distance between connotative meanings of pairs of concepts.

Introduction

One object: ve of this research wes to compare the attitudes of prospective elementary school teachers toward :athematics and three other areas, language arts, science, and social studies as acaderic discipli.es and as future teaching areas. The sub fects were prospectire \in le: :entary school teachers on who: substantial enforts had been enuended to enhance their mathenatical sophistication. A second objective was to test the predictive validity or congraity theory when applied to \underline{S} s and concepts from elementary eaucation. SD scales have exhibited some shiffing among factors and polarity inversions when applied to different concepts or families of concepts. The third obiective vas to study SD factor structure for the educational concepts and Ss studied. A final ob iective was to describe the locations in semantic space of the meaning of each concept studied and to describe any cluster patterns amont, these zeanings.

The body of this report is organized into four sections each dealing with those a ipects of the research which bear on one of the obsectives listed above. Each section way be studied independently of the others, but since the results of the factor analysis study were used to detereine the $S D$ scales used in the remaining studies it is presented first.

The Factor Analysis Study

Semantic Differential (SD) bipolar adiective scales exhibit stability across a wide rariety of $\mathbf{S}^{\prime} \mathrm{s}$, but they do not exhibit comparable stability across concepts. Shaw (1955), Osgood, Suci, and Tannenbaum (1957), Husek and Wittrack (1962), Osgood (1962), Hartman (1963), Tanka and Osgood (1963), Ohnmacht (1966). Thus, while subject-scale interaction is low, concept-scale interaction tends to be high. None the less the three classic SD factors labeled evaluation, potency, and activity generally appear and usually account for 50\% or more of the total variance.

Osgood, Suci, and Tannenbaum (1957) cautioned that the meanings of scale-defining adjectives may change from concept to concept and that the assumption of a fixed polority for a scale may not be tenable as concepts are varied. Moreover they reported that the activity factor fared poorly in single concept factor analyses. Anong 19 concepts tested, activity was identifiable as a factor in only eight; it was distributed among other factors for various concepts.

The problem was to determine the factorial structure of SD scales that have becone accepted widely as paradigms of the three factiors termed evaluation, potency, and activity when they are used by prospective elementary teachers to rate educational concepts. In particuler answers to the following questions were sought:

1. Are factors discernable as evaluation, potency, and activity evident?
2. Do scales which have become associated with one of the three factors listed above continue to register high and relatively pure loadings on their respective factors?
3. For each scale does the ad.jective traditionally associated with the positive end of the scale maintain this posture when the scale is used to rate educational concepts?

Methods

Seventeen concepts were selected that are directly related to classroonil activities in the elementary schools. Nine of them related tc the major curricular areas: they were language arts, mathematics, science, social studies, teaching children, teaching children language arts, teaching children mathematics, teaching children science, and teaching children social studies. The
remaining eight concepts consisted of the defining sentences of Flanders' (1960) categories of teacher behavior: The teacher criticizes or deprecates pupil behavior with intent to change it. The teacher gives directions or orders. The teacher expresses or lectures about her own ideas. The teacher asks questions to orient pupils to school work. The teacher asks questions to stimulate pupil participation in decision making. The teacher accepts, clarifies, and supports the ideas and feelings of pupils. The teacher praises or encourages pupils. The teacher justifies his own position or authority. Each concept was rated on 14 scales which were selected by reviewing the literature for $S D$ scales which consistently exhibited high and relatively pure factor loadings across a variety of concepts judged by different kinds of sub.jects. The scales are listed in Table 1.

Table I

SD Scales Selected Because of Their Factorial Stability

Evaluation	Potency	Activity
good-bad	strong-weak	fast-slow
nice-awful	heavy-light	active-passive
positive-negative	hard-soft	hot-cold
heavenly-hellish		
optimistic-pessinistic	masculine-feminine	
happy-sad		

The S's were 71 seniors in elementary education. The SD's were administered in an educational foundations course. Each S responded to the questionnaire both before and after an 8 -week student teaching period. Four random orders of concept presentation were used. The scale presentation order was selected randomly, and the order of "positive" and "negative" adjectives within scales was randonized. Each questionnaire included directions to \underline{S} as suggested by Osgood, Suci, and Tannenbaum (1957). The \bar{S}^{\prime} 's were given anple in-class time to complete the questionnaire, and every S completed every itern.

Thirty-four 14×14 matrices of product-moment correlations were produced. Each of these was factored using principal components analysis. Unities were used to estimate communality, and each analysis was followed by an orthogonal rotation to Kaiser's (1958, 1960) Varimax criterion. Linear correlations were justified because no systematic nonmonotonicity was observed among variables in the several matrices. While nonlinear relations undoubtedly exist anong the variables, a linear correlation model yields a reasonable measure of the degree of relationship for a monotonic relation.

Findings and Analysis

Tables 2 and 3 list the proportion of total variance accounted for by the set of rotated factors for each analysis.
Table 2

Concept	I	II	$\begin{aligned} & \text { Factors } \\ & \text { IIII } \end{aligned}$	IV	V	CUA
Social Studies . . . $\quad . \cdots, ~ \ddots$. 418	. 150	. 092	-	-	. 660
Science	. 318	. 140	. 090	-	-	. 548
Mathematics	. 419	. 122 .	. 092	-	-	. 633
Ianguage Arts	. 354	. 162	. 079	. 076	-	. 671
Teaching Children	. 218	. 241	. 103	. 080	. 073	. 615
Teaching Children Social Studies	. 357	. 158	. 075	-	-	. 590
Teaching Children Science	:302	. 137	. 104	. 088	-	. 631
Teaching Children Mathematics	. 368	. 150	. 083	-	-	. 601
Teaching Children Language Arts	. 308	. 160	. 086	. 075	-	. 629
Teacher criticizes of deprecates pupil behavior with intent to change it	. 415	. 123	. 096	-	-	. 634
Teacher gives directions or orders	. 431	. 121	. 090	. 078	-	. 720
Teacher expresses or lectures about her own ideas :	. 461	. 112	. 090	-	-	. 663
Teacher asks questions to orient pupils to school work	. 366	. 144	. 081	-	-	. 591
Teacher asks questions to stimulate pupil participation in decision making	. 267	. 127	. 105	. 096	. 078	. 673
Teacher accepts, clarifies, and supports the ideas and feelings of pupils	. 378	. 113	. 086	. 081	-	. 658
Teacher praises or encourages pupils	. 290	. 121	. 095	. 093	-	. 599
Teacher justifies his own position or authority	. 317	. 129	. 213	. 078	. 077	. 714

Table 3

Concept	I	II	Factors III	IV	V	CUR
Social Studies	. 420	. 128	. 104	-	\bullet	. 652
Science	.406	. 125	. 083	. 078	\cdots	. 692
Mathematics	. 358	. 124	. $089{ }^{\circ}$. 080	\cdots	. 651
Language Arts	. 398	. 180	.076	-	\cdots	. 654
Teaching Children	. 271	. 116	. 099	. 091	. 072	. 649
Teaching Children Social Studies	. 414	. 2124	. 084	. 074	\cdots	. 686
Teaching Cinildren Science	. 355	. 130	. 098	. 086	\cdots	. 669
Teaching Children Mathematics	. 333	. 137	. 088	. 081	-	. 639
Teaching Children Language Arts	. 356	. 166	. 087	-	-	.609
Teacher criticizes or deprecates pupil behavior with intent to change it	. 384	. 135	. 097	:076	-	. 692
Teacher gives directions or orders	. 450	. 107	. 091	. 083	-	. 731
Teacher expresses or lectures about her orm ideas	. 446	. 106	. 085	. 069	-	. 706
Teacher asks questions to orient pupilis to school work	. 332	. 127	. 105	. 088	. 033	. 735
Teacher asks questions to stimulate pupil participation in decision making	. 301	. 214	. 104	. 080	. 072	. 671
Teacher accepts, clarifies, and supports the ideas and feeling of pupils	. 350	. 103	. 091	. 076	-	. 620
Teacher praises or encourages pupils	:311	. 125	. 089	. 077	\cdots	. 620
Teacher justifies his own position or authority : . . $\because \cdots$. 439	. 125	. 088	-	-	. 652

The Varinax criterion terminated the rotation after three factors in 12 of the 34 analyses, and in no case was the rotation of more than five factors necessary. The proportion of total variance accounted for by the first three factors ranged from 0.462 to 0.663 . When fourth and fifth factors was rotated, they appeared to be reoccurrences of heavy loadings on evaluative scales, or a factor which more frequently appeared as Factor II or III but was deposed in that particular analysis, or they seemed uninterpretable. This report will, therefore, be restricted to an analysis of the factor loadings for the first three rotated factors.

Factor I

Factor loadings $\geq 0 . j 0$ for the first factor are displayed in Tables 4 and 5. (Decimal points are omitted and loadings are rounded to hundredths.)

Factor I is quite clearly the evaluative dimension. All six of the scales chosen because they exhibited high and relatively pure loadings on the evaluatire dimension in other studies yielded loadings 2.30 in 29 or more of the 34 factor analyses sum:rized here. In addition the scale active-passive qualified in 32 oi the 34 cases and the scale strong-weak qualified in 31 of the 34 cases.
Factor I Loadings $\quad \begin{aligned} & \text { Table } 4 . \\ & \end{aligned}$

Factor II

Data for Factor II are tabulated in Tables 6 and 7.
Factor II is best defined by the scales hard-soft and difficult-easy. In only four cases orit of 34 does one of these scales meet the 0.30 criterion while the other scale does not. Moreover, in 19 cases out of the 30 ir which they are paired they are ranked first and second. Excep. for the second administration of the Flanders' categories, the scale heavy-light loads consistently on Factor II.
Factor II Loadings $\begin{aligned} & \text { Table } 6 \\ & \geq 30:\end{aligned}$

								Scales						
Concept	Heavy- Light	Happy- Saù	ActivePassive	HardSoft	Good- Bad	Fast- Slow	$\begin{aligned} & \text { Eifficult- } \\ & \text { Easy } \end{aligned}$	Masculine- Feminine	$\begin{aligned} & \text { Heavenly- } \\ & \text { Hellish } \end{aligned}$	Hot- Cold	PositiveNegative	Nice- Awful	OptimisticPessimistic	StironsNeak
Sociel Studies	-71			-67					67	-36				
Science	68	-44		81			67		-40	33		-38		
Nathematics	-65			-78		40.	-71		55			41		
Lenguage Arts	31			90			86							
Teėching Children	-60			-81		57	-58							
Teaching Children Sociel Stuaies	46			77			67	69						46
Teeching Children Science	66			76			69							
Teechins Children Natheratics	-67	42		-70			-75		61			47		
Teaching Children Language Arts	-73			-84			-86							
Teacher criticizes or deprecates pupil beharior with intent to change it	73	-31	47	80			32							
mieacher gives directions or orders	85			78					-33					
Teacher ex uresses or lectures about her oum ideas	-74			-80			-31	-37						
Teacher asks questions to orient pupils to school work	-66			-71			-70				-36			-47
meecher asis questions to stimulate pupil participation in decision making	-77					-33		-71		.				-51
Teacher accepts, clarifies, and supports the ideas and feelings of pupils	69		31	84 57	-43		. 66			36		:-		41
Teacher praises or encourages pupils														
Teacher justifies his own position or authority.	-78								79	-39		52		

Table 7
Factor: If Loadings $\geq 30^{\prime}$: Seconà Aöministration

Concept	Scales											
	HeavyLight	Happy- Sad	ActivePassive	HardSoft	GoodBad	FastSlow	$\begin{aligned} & \text { Difficult- } \\ & \text { Easy } \end{aligned}$	HasculineFeminine	Heavenly- Hellish	Hot- PositiveCold Negative	Nice Awful	Optimistic- StrongPessimistic Weak
Social Studies	-42			-89			-8i:		49			
Science	-50		-31	-78			-70		40			
Hathematics				-84			-78		68		30	$\bullet .35$
Lenguage Arts	61			83		-37.	81		-48			
Teaching Children	41			69			79		-40			
Teaching Children Social Studies	-51			-84			-71	-33	37			
Teaching Children Science	40			85			83		-47		-36	
Teaching Children Mathematics	-39	47		-79		38	-79		70		61	
Teaching Children Language Arts				79			87		-66	.		
Teacher criticizes or deprecates pupil behavior with intent to change it	-81		-33	-68			-54			39		
Teacher Eives directions or orders				80				71				
Teacher expresses or lectures about her oun ideas				77			76		-30			
Teacher asks questions to orient pus."to school work				80			78		43	35.		
Teacher asks questions to stimulate pupil participation in decision making				73			79	60	-45			
Teacher accepts, clarifies, and supports the ideas and feelings of pupils	-83	48				50			55	47	37	
Teacher praises or encourages pupils.		36		61		59				77		
Teacher justifies his orm position or authority				79			. 80		-39	37		

Factor III

Tables 8 and 9 display the data for Factor III.
Factor III is defined by the following scales: fas't-slow, masculine-feminine, and hot-cold.
Factor III Loadings $\begin{array}{r}\text { Table } 8 \\ \geq\end{array}$

	Scales													
Concept	Heavy- Light	$\begin{aligned} & \text { Happy- } \\ & \text { Sad } \end{aligned}$	ActivePassive	HardSoft	Good- Bad	$\begin{aligned} & \text { Fast- } \\ & \text { Slow } \end{aligned}$	$\begin{aligned} & \text { Difficult- } \\ & \text { Easy } \end{aligned}$	$\begin{aligned} & \text { Masculine- } \\ & \text { Feminine } \end{aligned}$	$\begin{aligned} & \text { Heavenly- } \\ & \text { Hellish } \end{aligned}$	Hot.. Cold	PositiveNegative	MiceAmful	Optimisticpessimistic	StrongWeak
Social Studies			.	-40			-86	-57						
Science						76		72		32				
Natheratics						30		88		61				
Language Arts						-74		-						-41
Teaching Children		-59	-84		-77									
Teaching Children Social Studies			-70		-49	-71		38			-59	-49	-56	-4.7
Taaching Children Science		31				71		74		68				
Teaching Children wethematics				-40				-77		-75				
Teaching Children Language Arts								-78	53	58				
Teacher criticizes or deprecates. pupil behavior with intent to change it	.					64	-64	-59		-43				
Teacher gives directions or orders						-63		88	-36	-63				
Teacher expresses or lectures about her orm ideas						-51	81	-57						
Teacher asks questions to orient pupils to school trork	-37					-60		-66		48				
Teacher asks questions to stimulate pupiz participation in decision making				83			73							
Teacher accepts, clarifies, and supports the ideas and feelings of pupils.	71					-69	31		-33	-36				
Teacher praises or encourages pupils		36	61		61						81	56	68	34
Teacher justifies his own position or authority			40	75			81							38

Factor III Loadings $\geq \begin{aligned} & \text { Tablëe } 9 \\ & \geq\end{aligned}$

								Scales						
Concept	Heavy- Light	$\begin{aligned} & \text { Happy- } \\ & \text { Sa.d } \end{aligned}$	ActivePassive	HardSoft	$\begin{aligned} & \text { cood- } \\ & \text { Bad } \end{aligned}$	$\begin{aligned} & \text { Fast- } \\ & \text { Slow } \end{aligned}$	$\begin{aligned} & \text { Difficult- } \\ & \text { Easy } \end{aligned}$	MesculineFeminine	$\begin{aligned} & \text { Heavenly- } \\ & \text { Hellish } \end{aligned}$	$\begin{gathered} \text { Hot- } \\ 1 \mathrm{id} \end{gathered}$	PositiveNegative	NiceAwful	OptimisticPessimistic	StrongWeak
Social Studies	57					61		84						
Science			-30		$3{ }^{3}$	66		-77	30	53	39		:	35
Kathematics	-72		-38					68						
Language Arts	32							82		-71				
Teaching Children	-50		33			41		-47	43	76				54
Teacioing Children Social Studies						61			. 32	91				30
Teaching Chilaren Science						56		-62		83				32
Teeching Children Mathematios	61							-82						
Teaching Childien Language Arts	-73							-59		'				
Teacher criticizes or deprecates pupil behavior with intent to change it						-63	81		-51					
Teacher gives directions or orders	47		.			55	-76							
Teacher expresses or lectures about her 0.7 ideas	-83	34					.	30		49			. \cdot	
Teacher asks questions to orient pupils to school work		47				66		64		67				
Teacher asks questions to stimulate pupil participation in decision making	-54	32							48	50	80	66	54	72
Teacher accepts, clarifies, and supports the ideas and feelings of pupils				-46			-60	-66		58			35	44
Teacher praises or encourages pupils	-72							-56	32		44			
Teacher justifies his own position or authority	75°					-32		-63		-31				

Factor "Purity"
Data in Table 10 provide information relative to the factorial "purity" of the high-loading scales for Factors I, II, and III across the set of educational concepts studied.

Table 10
Frequency of Occurrence of Factor Loadings ≥ 0.30 on Factors for
Which Scale Is Not Listed

Relative frequency with which scale loads ≥ 0.30 on other factors

Factor I scales

hanpy-sad	0.18
active-passive	0.16
good-bad	0.07
heavenly-hellish	0.43
positive-negative	0.09
nice-awful	0.16
optimistic-pessi:aistic	0.16
strong-weak	0.21

Factor II scales
hard-soft
0.07
difficult-easy
0.24

Factor III scales

fast-slow	0.37
masculine-feminine	0.12
hot-cold	0.44

If we were to reject all scales with loadings ≥ 0.30 on other factors in 25% or more of the cases, then heavenly-hellish, fast-slow, and hot-cold would be eliminated.

Conclusions and Recommendations

Note that active-passive, the traditional paradigm of the activity factor, is clearly an evaluative scale with these educational concepts and sub.jects. In only three cases out of

68 does it load above 0.50 on Factor II or III. Similarly strong-weak, a traditional potency scale, becomes ain evaluative scale. In only two cases does it load above 0.50 on Factor II or III. Factor II is a hybred of the traditional activity and potency factors. In light of the concepts rated and the factor loadings it appears that hard-soft and difficult-easy become synonorous, and that Factor II is associated with intellectual rigor, profundity, substance, and opaqueness rather than physical hardness, strength, or the like. The shift in connotative meaning among Factor II scales nay account for the masculine-feminine scale's low loadings on this factor: While masculine-feninine may link with hard-soft for physical attributes, it certainly does not forn such a link for intellectual attributes connected with these educational concepts. In these settings it is linked with two traditional activity scales in Factor III.

While masculine-reminine is the "purest" scale in Factor III, it does not maintain a stable polarity across the concepts included. An indication of this instability may be observed in Table 11.

Table 11
Comparison of the Polarities of Pairs of Scales Whose Loadings Were ≥ 0.30 on Factor III

Same Polarity Opposite Polarity

masculine-feminine with fast-slow	10	6
nasculine-feminine with hot-cold	8	10
fast-slow with hot-cold	27	2

These data suggest that in about one--half of the cases 'ferimine' defines the positive end of the scale. Considering the predominance of female teachers in elementary school classrooms, this outcome is not surprising.

It seems clear that some scales which have come to be regarded as activity or potency scales because of their relatively consistant performance in many studies did not perform in expected ways with these educational concepts and subjects. Kerlinger (1964) quotes Osgood as suggesting that SD's should always include scales of known factorial content. This study emphasizes that it is dangerous to suppose that a scale has a "known" factorial content that can be assured at the outset. Moxeover, one scale's polarity switched from concept to concept for the same subjects during a single $S D$ administration. Erroneous results and conclusions would be generated by scoring and analyzing responses based on assumed scale performance.

The 34 factor analyses including rotations required only 3.4 minutes on an IBM 7094 computer. Those who use the SD with educational concepts should perform factor analysis as a first stey in data analysis.

The Attitude Study

Substantial efforts are being made to improve the mathematical sophistication of prospective elementary teachers. The activity of the Committee on the Undergraduate Pragran in Mathematics (CUFM) of the Mathematical Association of America, increases in mathematics course requirements for teacher certification, new instructional material for the prospective teacher, and the growing demand of school districts for better mathematical preparation for teachers have all helped to inieiate and sustain these efforts. (CUPM 1961, 1963, 1964, 1965a, and 1965b.)

One effect of this activity has been to make obsolete many of the research findings on prospective teachers' attitudes toward mathematics and teaching children mathematics. The constancy of group attitude structures en.joys only a linited half-life under most circunstances. This coupled with the amount of attention recently bestowed upon mathematics education suggests the need to measure current attitudes of prospective elementary teachers.

Dutton (1952, 1954, 1962) reported that many prospective elementary teachers dislike arithmetic, that these negative attitudes are acquired in elementary and junior high schools, and that university courses in mathematics and methods of teaching mathematics do little to induce more positive attitudes. Suith (1964) reported that his Ss held more favorable attitudes toward arithmetic than did Dutton's 1954 Ss since 88.6% of the 1964 Ss rated their feelings toward arithmetic either neutral or favorable compared :ith 79.5% of the 1954 Ss. Kane (1968) noted that a comparison of 12 specific attitude statements reported in the studies of 1954, 1962, and 1964 revealed no trend toward more positive attituades in 1964 over the earlier responses. He suggested the increase from 79.5 to 88.6 percent may be an artifact of socially acceptable behavior stemming fror knowledge of curricular revision in school mathematics rather than evidence of a shift in underlying attitudinal disposition. Aiken and Dregen (1961) found attituaes toward mathematics related to numerical ability, intelligence, achievement in mathematics, and attitudes toward former teachers. Aiken (1963) concluded that \underline{S} s holding favorable attitudes toward mathematics tended to be socially and intellectually more mature, self-controlled, and theoretically oriented. Huettig and Newell (1966) demonstrated an inverse relationship between the number of years of teaching experience and favorable attitudes toward modernizing elementary school mathematics curricula. They also reported that the amount of training in updated mathematics was related closely to Ss attitudes toward curriculum revision. Todd (1966) showed a positive relationship between understanding arithmetic concepts and attitudes toward arithnetic. Kane (1968) reported that for prospective intermediate grade teachers attitudes were higher
toward mathematics than tcuards social studies, science, and language arts. Prospective K-3 teachers ranked language arts highest; the other three areas were closely aligned and below language arts.

Attitudes are presumably acquired in much the sane way as other internal learned activity. They may be thought of as mediating evaluative behavior; they are referred to as favorable or unfarorable as though being located on some basic bipolar continuum. One way to assess them is to measure their direction (favorable-unfavoraisle) and distance from a neutral point (slightly favorable, very favorable, etc.).

The Semantic Differential (SD) with which \underline{S} responds to a concept such as "matheiaties" by rating it on a set of seven point scales each defined by a pair of bipolar adjectives such as "good-bad" or "heavy-light", provides a means of measuring attitudes. Not the least of the SD's advantages is that it looks less like an attitude questionnaire than other standard techniques. Factor analyses of SD data have consistently yielded a first factor identified as evaluation. Scales such as "goodbad", "positive-negative", and "successful-unsuccessful" characteristically load heavily on Fractor I. Osgood, Suci, and Tannenbaurn (1957), Osgood (1962), Miron (1961), Diob (1965), Mueller (1966), DiVesta and Dick (1960). Attituade may be identified with the evaluative dimension of the semantic space. Thus, attitude toward a concept is defined as the projection of the concept's point in semantic space onto the evaluative axis. The reliability and ralidity of the SD as an atititude measurement instrunent have been established for Ss ranging in age from eight years t̀o adulthood. Osgooa, Suci, and Tannenbaurn (1957), Miniron (1961), DiVesta and Dick (1966).

In this study attitudes of prospective elementary teachers toward four academic areas, teaching children, and teaching children in each of the four academic areas were measured with a SD. Differences among these measures were analyzed. Additionally, relationships between attitudes toward mathematics and achievement in collegiate courses in mathematics and teaching mathematics were determined. Sinilarly the relationship between teaching children mathenatics and achievenent was determined.

Methods

A SD questionnaire was constructed including the following nine concepts to be rated: language arts, mathematics, science, social studies, teaching childrer, teaching children language arts, teaching children mathematics, teaching children science, and teaching children social studies. Each concept was rated on 14 bipolar adjective scales of which six were picked as evaluative. These scales were selected by reviewing the literature for $S D$ scales which consistently exhibited high and relatively pure factor loadings across a variety of concepts ! !udged by many different sorts of subjects.

Four random orders of concept presentation were used. The scale presentation order was selected randomly and the order of "positive" and "negative" adjectives within scales was randomized. Each questionnaire included directions to S suggested by Osgood, Suci, and Tannenbaun (1957). The Ss were given ample time to complete the questionnaire and every \underline{S} completed every item.

The Ss were 71 seniors in elementary education. The SDs were administered in an Educaiional Foundations course by a professor who was not associated with any of the four disciplines named in the concepts. The $\underline{S} s$ were informed that the procedure was part of a research project supported by the faculty in elementary education. No connection to a specific faculty meliber or area of specialization was made. S's responses were factor analyzed to determine whether or not each scale evidenced high factor loadings (0.3 or greater) on the factor for which it was chosen. On the basis or this analysis one prospective evaluative scale was discarded. The remaining five evaluative scales were: good-bad, nice-awful, positive-negative, optimisticpessimistic, and happy-sad.

A score from O to 6 was recorded for each S on each evaluative scale. Thus the possible range of attitude scores vas 0-30. A score of 0 indicates maximum intensity of negative aititude toward the concept being rated; a score of 15 indicates neutrality; a score of 30 indicates maximum positive attitude.

Findings and Analysis

Means and standard deviations of attitude scores for each concept are reported in Table 12. The first trend to note is that the group attitude toward each of the nine concepts;

Table 12
Means and Staindard Deviations or Attitude Scores Toward Nine Concepts for 71 Prospective Elementary School Teachers

Concept	Mean	Standard Deviation
Teaching Children (TC)	26.27	3.41
Language Arts (IA)	23.49	4.16
Teaching Children Language Arts (TCIA)	24.06	3.30
Mathematics (M)	21.52	5.31
Teaching Children Mathematics (TCM)	22.90	4.32
Science (S)	23.37	3.92
Teaching Children Science (TCS)	24.25	3.26
Social Studies (SS)	$21.1 \bar{j}$	5.04
Teaching Children Social Studies (TCSS)	23.00	4.24

is significantly ($\alpha<0.001$) higher than the neutral point. Not only do these prospective teachers claim favorable attitudes toward teaching children and teaching children in each of the four curriculum areas, but their dispositions toward the four disciplines thenselves are clearly positive.

Several interesting questions remain. First, what differences in stated attitude exis'c between pairs of concepts of the form \underline{x} and teaching children x ? In Tablel3 t-scores are reported for each pair. Only the difference between attitudes toward social studies and teaching children social studies is significant at the 0.05 level.

Table 13
An Analysis of the Differences between Mean Attitude Scores for Concept

Pairs of the Form X and Teachins Children X

Concept Pairs	t
IA and TCIA	0.90
S and TCS	1.47
M and TCM	1.79
SS and TCSS	$2.39 *$
* Significant: ${ }^{t}{ }_{0.05}=1.98$.	

Two additional questions are (1) what differences exist among the mean attitudes tovard the four academic disciplines, and (2) what differences exist among the mean attitudes toward teaching children and concepts of the form teaching children x ? Table 14 includes ANOVA results in response to these questions.

Table 14

> ANOVA of Mean Attitude Scores
> Toward Four Academic Areas
> and Toward Five Teaching Categories

Concept Groups	df	Mean Square	F
LA, M, S, SS	3,280	106.96	4.94
TC, TCLA, TCM, TCS , TCSS	4,280	127.34	9.91^{*}

*Significant at the 0.05 level $0.05=8.54$ for 1,230 ; thus no signif canguage arts, amond the means was found for attitudes toward language arts, natheratics, science, and social studies. F. $=5.65$ for $d f=$ 4, 200 ; thus significant differences exist at. the 0.05 level among the mean attitude scores toward the concepts teaching children and teaching children in each of the four areas. Tukey's procedure was employed to deternine which pairs of means differed significantly froin one another. (Borlker and Lieberman, 1959). In Table 15 differences between the means for each pair are displayed.

Table 15
Differences Between Pairs of Mean Attitude Scores Toward Five Teaching Concepts

Concept Pairs	Differences
TC, TCIA	2.21^{*}
TC, TCM	3.29^{*}
TC, TCS	2.02^{*}
TC, TCSS	3.27^{*}
TCIA, TCM	1.06
TCLA, TCS	0.19
TCIA, TCSS	1.06
TCM, TCS	1.27
TCM, TCSS	0.02
TCS, TCSS	1.25

*Significant at the 0.05 level
To be significant at the 0.05 level a difference must be 1.63 or greater. Teaching children evoked the highest mean score of any concept in the study and the mean score for this concept differs significantly from mean scores for all other concepts. It appears that these prospective elementary teachers are most favorably disposed towards teaching children and significantly less favorably disposed toward teaching them language arts, mathematics, science, or social studies. There a: :o significant differences between mean scores within any pair c : form (TCX, TCy). While the differences are not signif_cant it is interesting to note that the prospect of teaching children science generated the highest mean attitude score of ail the curriculum areas.

For each S an index of achievement in mathenatics was determined by averaging grades in collegiate mathematics courses and in methods of teaching elementary school mathematics. The correlation between achievement in mathematics and actitude toward mathematics was $0.41(p=0.0012)$. The correlation between achievement in mathematics and attitude toward teaching children mathematics was $0.36(p=0.0016)$.

Conclusions and Recominendations

1. The prospective elementary teachers held positive attitudes toward teaching children, toward teaching children in each of the curriculum areas studied, and toward the academic areas thenselves.
2. In all cases the group attitude torrard a curriculum area is lower than the group attitude toward teaching children in that area. In only one case, social studies and teaching children social studies, is the difference significant. The difference between group attitudes toward mathematics and teaching children mathematics approached the 0.05 leve.
3. Perhaps the most surprising result obtained was that no significant differences existed among the group attitudes tovard the fow academic areas even though mathenatics and social studies evoked somewhat lower scores than did language arts and science.
4. The extraordinarily high attitude scoxes fox teaching chilaren generated significant differences betreen it and each concept of the form teaching children x. The prospective elementary school teacher sceas to romanticize the role oi the teacher and to think of teaching childrer rather differently from teaching childien something in the four major curriculum areas.
5. Both attitudes toward athematics and teaching children mathematics were positively related to S^{\prime} 's achievenent in collegiaue mathenatics (including achievement in a mathematics methods course).

Comparing prerious findings on attitude structues of prospective elementary teachers with these results involves some risk since the $S D$ technique was not used in the earlier studies cited. The finding of no significant differences among attitudes toward the Sour acadenic areas studied deserves replicative testing. These data imply that the concepts mathematics, science, and teaching children in these areas elicit attitudinal responses not signieicantly unlike those for the concepts language arts and teaching language arts.

The Congruity Study

A congruity mocel for predicting semantic cirrerential (SD) factor scores for a composite concept from the factor scores of its component concepts tas developed by Osgooc, Suci, and Tannenbaum (1957, p. 207). Brienly stated the congruity principle asserts that if two component concepts of acasured aming such as teaching and children are coibined to form the composite concept teaching children, the meaning of the composite ay be predicted by applying the coneraity :odel for each dimension for the semantic space. Osgood, Suci, and Tannenbauin (1957, pp. 27j-284) cite evidence to suppori the predictise power of their :odel. They report that: (1) obteined factor scores for couposite concepts are consistently within the limats set by the factor scores of the comonents; (2) obtained factor scores deviateá fro: the predicted scores on the average only by amouts atcributable to unreliability except for factor I, the evaluative factor:;
(\therefore) obtained and predictec factor scores exhibit a high positive correlation. They concluded that semantic effects rollow the expectations frow the congruity principle quite closely for the average meaning of co:posite concepts.

This study was designed to determine when .. ript the principle of congruity predicts conposir. concept zean. ig with cowponent and couposite concepts as well as Ss from ele entary eaucation.

Methods

The Ss were 73. seaiors tat ioring in elementary education at Purdue University who were enrolled in a professional semester during 1956-1967. A SD consisting of 14 bipolar ad iective scales was presented to each S for each of these five component concepts: athewatics, social studies, science, language aris, and teaching children. Four composite concepts teaching chijaren aathematics, teaching chilcren social studies, teaching chilaren science, and terching children language arts also were included. The order of concept and scale presentation was randowized as was the order of adjectives within scales. In-class time was used to complete the questionnaire and every S completed every ite:: Principal components factor analysis with rotation to Kaiser's (1958, 1960) criterion re ealed that three factors account for 0.50 to 0.75 of tine variance across scales awong the nine concepts. Table 16 lists the scales for each factor.

Table 16
SD Scales Associated with Each Factor

Factor I	Factor II	Factor III
happy-sad	heavy-light	fast-siow
cood-bad	hard-soft	hot-cold
hearenly-hellish	difficult-easy	
positire-negative		

The reabining four scales were discarded since they were confounded across sactors.

Findings and Analysis

Obtained factor scores for each \underline{S} across the nine concepts were calculated. Predicted scores for each or the four composite concepts were comptec using the congruity model. Mean obtained and predicted scores orer Ss are presented in Table 17.
Table 17
Kean Factor Scores for Four Composite Concepts over Ss
Mean Factor Scores for Four Composite Concepts over S.

> Factor I Factor II.
Factor III
obtained Predicted
$\stackrel{9}{9}$
8
of
.66

An F test indicated lack of homogeneity of variance among the scores for composite concepts on Factors I and howogeneity anong those for Factors II and III. The \underline{Z} test was used in compring obtained and predicted means of composjite concepts for Factor I (Winer, 1352 , p. 50). These means were significantly different ($\alpha<0.01$). The t test was used to analyze scores for Factors II and III. None \bar{O} these differences was significant at $\alpha<0.01$. The alpha lerel for each dinference is displayed in Table 17 .

It appears that the predictive pover of the coneruity model is stronger with Factor II scores than with scores for Factors I and III. In fact the dinferences between obtained and predicted scores for Factors I and III are significant at the 0.05 lerel. in all but one case. inoreover, the predicted scores are consistently higher than the obtained scores for Factors I and III. If a constant of about $-0 . \therefore$:rere introduced into the prediction formula the differences betreen predicted and obtained scores for Factors I and III would rirtually disappear. The insertion of a constant of -0.5 woula decrease the predictive ability of the gormula in only one case amone the Factor II scores.

To obtain a different weasure of the predictire validity for the congruity formia, wean component concept scowes over Ss for each factor vere calculated. These scores are displayed in Table 18.

Table 18
Obtained Mean Co: ponent Concept Scores over Ss

	Factor I	Factor II	Factor III
Language Arts	1.70	.47	.63
Mathenatics	1.30	.77	.95
Science	1.67	.60	.57
Scial Studies	1.23	.35	.54
Teaching Children	2.25	.13	.69

Predicted aeans for the composite concents were computed by substituting the rean scores for the couponent concepts into the congruity formula. Table 19 includes these predictions together with the obtained zeans for the comosite concepts.
rable 19
Predicted and Obtained Means for Composite Concepts

Using t tests tiro $0 \mathfrak{F}$ the differences betreen predicted and obtained mean scores for factor I are significant at the 0.01 level. The alpha level $\hat{1} 0 \times$ each difference is displayed in Table 19, The patiern of differences between obtained and predicted scores when the predicted sco:es are generated frow wean scores from component concepts is quite similar to the patterin observable in Table 17. Prediction of Factor II scores is bettor than prediction of Factor I and III scores. In Factors I and III the predicted scores are higher than the obtained scores in all but one case. If the constant -0.5 were inserted in the congruity Ormila, predictions would be improved in only sil: out of 12 cases. Predictions would be inpored in eight out of twelve cases if the constant were -0.2 .

The data sumarized in Tables 17-19 indicates that predictions of yean factor scores based on the congruity fomula are often too high and that it way be possible to improve the predictability by adding a constant. Product-:oment correlation coerficients between obtained and predicted scores orer Ss were computed. These dato, presented in Taiole 20, give an inảication oif the relationship betreen obtained and predicted scores which would remain invariant is a constant vere added to each predicted scorc.

Table 20
Correlations Between Obtained and Predicted Composite Concepts over Ss

Factor I Factor IJ Factor III

Teaching Children Language Arts	.676	.785	.595
Teaching ChiJdren Wethe: aties	.550	.507	.749
Teaching Children Science	.600	.615	.372
Teaching Childen Sociel. Studizs	.505	.565	.519

Test-inmediate retest reliabilities of factor scores for serenth grade Ss were 0.34 for Factor I, 0.72 for Factor II, and 0.65 for Factor III (DiVesta and Dick, 1960). While these coefficients wight be expected to be sowewhat higher for aduit S's, sone of the correlations reported in Table 20 appear to be pushing their upper bound. All but the correlation for Factor III under teaching chilcrein science are respectably high.

Conclusions and Recomendations

The ability of a congruity model to preaict couposite concept meaning as deeined by responses to a se: antic differential questionnaire was examined. The component concepts, the composite concepts, and the Ss were $2 l l$ associated with teaching in the elementary school. Theae mere 71 Ss in the study. Each S was encolled in a professional sei:ester for prospective elementary school teachers.

Tro avenues of analysis were followed. First, a series of tests of differences between predicted and obtainer measures of factor scores was coispleted. These data revealed a trend toward obtained measures being systenatically lower than predicted neasures. Thus, while the prediction rodel fail气d to "hit the :ark", the ad"ustinent of edding a constant, c, such that $-0.3 \leq c \leq-0.2$, to the predicted neasures mould have jimpoved its marksuanship. Second, obtained and predicted factor scores were correlated to indicate their relationship independent OE a systematic error such as the one describec abore. After accouting for the reliability of $S D$ factor scores the correlations indicate that the congenty wodel does predict responses to composite concepts frou responses to component concepts.

Additional research should be undertaken to confirin or revise the estimate that $-0.3 \leq c \leq-0.2$ is an optimun constant to use in revising the model for use with concepts and Ss from the field of education.

The Distance Study

The primary intent of this study was to generate a quantitative dictionary of the connotative meanings as reported by prospective elementary school teachers of the following nine concepts: language arts, mathematics, science, social studies, teaching children, and the four composite concepts of the form teaching children x. A secondary objective was to measure the similarity or dissimilarity of connotative meaning between selected pairs of concepts.

Methods

The geometric model underlying the analysis of the SD is Euclidean. -space. For the concepts, scales, and Ss studied in this series of experiments three dimensional Euclidean space seems appropriate.* On each of the three dimensions (factors) a score was calculated by averaging the scale scores for the scales of that particular factor. Each of these mean factor scores represents the distance from the origin on one of the axes for the concept being considered. Thus an ordered triple composed of mean factor scores was computed for each concept. Each ordered triple was of the form ($S_{I}, S_{I I}, S_{I I I}$) where S_{x} denotes the mean
factor score on the x dimension. The set of such ordered triples constitutes a quantitative dictionary of the connotative meanings of the respective concepts for the population of \underline{S} involved. Since each number in a given ordered triple is a mean of a distribution of factor scores, the ordered triple may be thought of as the arithmetic centroid of a cloud of points in semantic space each of which denotes the connotative meaning of the concept for a particular S. By plotting the ordered triples a graphical representation of concepts' meanings is produced.

Similarity or dissimilarity of meanings between selected concepts were measured by applying the ordinary distance formula from Euclidean 3-space analytic geometry.

Findings and Analysis
Mean factor scores together with their respective standard deviations for each concept are presented in Table 21.

[^0]Table 21
Connotative Meanings of Selected Concepts
as Defined by Locations in
Semantic Space

	I			II		III	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	
Language Arts	1.9	0.9	0.0	1.4	0.5	0.9	
Mathematics	2.0	0.8	1.6	0.7	0.0	0.9	
Science	2.0	0.9	0.7	1.3	-0.1	1.0	
Social Studies	1.7	1.1	0.2	1.2	0.2	0.9	
Teaching Children	2.6	0.5	0.4	1.2	0.6	0.9	
Teaching Children Language Arts	2.1	0.8	0.1	1.3	0.6	0.9	
Teaching Children Mathematics	2.0	0.8	0.2	1.6	0.1	1.0	
Teaching Children Science	2.2	0.7	0.5	1.4	0.2	0.9	
Teaching Children Social Studies	1.9	1.0	0.2	1.2	0.2	0.8	

Figure 1 depicts the location of the centroids for the four academic disciplines. Figure 2 locates the centroids for the remaining five concepts, teaching children, and those of the form teaching children X.

Distances between centroids for selecteã pairs of concepts appear in Table 22.

Figure I

Centroide for Fown Acedemic Disciplines

Figura $\dot{2}$

Centroids for Teaching Children and Four Concepts of

 the Forim Teaching Children X

Table 22
Distances Between Selected Pairs of Concepts in
Semantic Space

Concept Pair	Distance	Concept Pair	Distance
IA-M	1.7	TC-IA	0.8
IA-S	0.9	TC-TCLA	0.6
IA-SS	0.4	TC-M	1.5
M-S	1.0	TC-TCM	0.7
M-SS	1.5	TC-S	1.0
S-SS	0.6	TC-TCS	0.6
LA-TCIA	0.2	TC-SS	1.1
M-TCM	1.4		1.0
S-TCS	0.4		
SS-TCSS	0.4		

Conclusions and Recommendations

Figures 1 and 2 together with Tables 21 and 22 offer a variety of descriptive data relative to the connotative meanings of the concepts studied for the Ss used. Probably the most striking aspect of these meanings is their virtually universal presence in the first octant of semantic 3-space. Only one concept, science, is located outside octant one and then only by one-tenth of a scale unit on Factor III. The distinct difference between the concept mathematics and the other concepts on Factor II accounts for the large distances observed between mathematics and other concepts.

This method of constructing a quantitative dictionary of connotative meanings which has been utilized in a variety of studies seems to be easily applicable to educational concepts.

References

Aiken, L. R., \& Dreger, R. M. The effect of attitudes on performance in mathematics. Journal of Educational Psychology, 1961, 52, 19-24.

Aiken, L. R. Personality correlates of attitude toward mathematics. Journal of Educational Research, 1963, 56, 476-480.

Bowker, A. H., \& Lieberman, G. J. Engineering statistics, Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1959.

Committee on the Undergraduate Program in Mathematics. Five conferences on the training of mathematics teachers. Mathematical Association of America, Sept., 1961.

Committee on the Undergraduate Program :n Mat'nematics. Annual report. Mathematical Association of America, Sept. 1963.

Committee on the Undergraduate Program in Mathematics. Ten conferences on the training of teachers of elementary school mathematics. Mathematical Association of America, Apr., 1964.

Committee on the Undergraduate Program in Mathematics. Ten conferences on the training of teachers of elementary school mathematics. Mathematical Association of America, Apr., 1965. (a)

Committee on the Undergraduate Program in Mathematics. Mathematics text materials for the undergraduate preparation of elementary school teachers. Mathematical Association of America, Nov., 1965. (b)

Diob, L. N. Studies in social atititudes III: Attitude assessment through semantic differential techniques. Journal of Social Psychology, 1965, 65, 303-314.

DiVesta, F. J., \& Dick, W. The test-retest reliability of children's ratings on the semantic differential. Educational and Psychological Measurement, $1966,26,605-616$.

Dutton, W. H. Attitudes of prospective teachers toward arithnetic. The Elemertary School Journal, 1952, 53, 84-90.

Dutton, W. H. Measuring attitudes toward arithmetic. The Elementary School Journa1, 1954, 24-31.

Dutton, W. H. Attitude change of prospective elementary teachers toward arithmetic. The Arithmetic Teacher, 1962, 9, 418-42l;
landers, N. A. Teacher influence, pupil attitudes, and achievement. Mirneapolis: University of Minnesota. (USOE Coop Res Project No. 397), 1960 (mimeo).

Hartman, F. R. Behavioristic approach to communication. AV Review, 1963, 11, 155-190.

Huettig, A., \& Newell, J. M. Attitudes toward introduction of modern mathematics program by teachers with large and small number of years experience. The Arithmetic Teacher, 2966, 13, 125-130.

Husek, T. R. \& Wittrock, M. C. The dimensions of attitudes toward teachers as measured by the semantic differential. Journal of Educational Psychology, 1962, 53, 209-213.

Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, 23, 187-200.

Kaiser, H. F. The application of electronic computers to factor analysis. Eaucational and Psychological Measurement, 1960, 20, 141-151.

Kane, R. B. Attitudes of prospective elementary school teachers toward mathematics and three other subject areas. The Arithmetic Teacher, 1968, 15(2), 169-175.

Kerlinctr F. F. Foundations of behavioral research. New York: Holt, Rinehart and Winston, 1964.

Miron, M. S. The influence of instruction modification upon test-retest reliabilities of the semantic differential. Educational and Psychological Measurement, 1961, 21, 889-893.

Mueller, W. J. Anxiety level, inferred identification and response tendencies on a semantic differential. Journal of Counseling Psychology, 1966, 13, 144-152.

Ohnmacht, F. W. Some dimensions of meaning of the concept televised instruction. Educational and Psychological Measurement, 1966, 26, No. 2, 395-401.

Osgood, C.E., Suci, G. J., \& Tannenbzum, P. H. the measurement of meaning. Urbana: University of Illinois Press, 1957.

Osgood, C. E. Studies on generality of affective meaning systems. American Psychologist, 1962, 17, 1028.
'Shaw, D. R. Variation in inter-scale correlation on the semantic differential as a function of the concept judged. Unpublished Master's Thesis, University of Illinois, 1955.

Smith, F. Prospective teachers' attitudes toward arithmetic. The Arithmetic Teacher, 1964, 11, 474-477.

Tanka, Y. \& Osgood, C. E. A cross-cultural and cross concept study of the generality of semantic spaces. Journal of Verbal Learning and Verbal Behavior, 1963, 2(5-6), 392-405.

Todd, R. M. A mathematics course for elementary teachers: Does it improve understanding and attitude? The Arithmetic Teacher, 1966, 13. 198-202.

Winer, B. J. Statistical principles in experimental design. New York: McGraw-Hill, 1962.

Appendix

The Semantic Differential Questionnaire

The directions to \underline{S} follow the suggestion of Osgood, Suci, and Tannenbaum (1957). The order of bipolar adjective scale presentation was determined in a random fashion. The order of the adjectives within a scale also was determined randomly. Four random orders of concept presentation were used. A complete SD questionnaire arranged in one of the four concept orders used is included in this appendix.

The purpose of this study is to measure the meanings of certain things to various people by having them judge them against a series of descriptive scales. In taking this test, please make your judgments on the basis of what these things mean to you. On each page of this booklet you will find a different concept to be judged and beneath it a set of scales You are to rate the concept on each of these scales in orde:

Here is how you anj: ine these scales:
If you feel that the concupt at the top of this page is very closely related to one end of the scale, you should place your check-mark as follows:
fair \qquad : \qquad
\qquad : \qquad : \qquad : \qquad : \qquad unfair
or
fais \qquad : \qquad : \qquad : : X unfair

If you feel that the concept is quite closely related to one or the other end of the scale (but not extremely), you should place your check-mark as follows:
strong \qquad $: X:$ \qquad : \qquad : \qquad : \qquad : \qquad weak
or
strong \qquad : \qquad : \qquad : \qquad
\qquad : X \qquad weak

If the concept seems only slightly related to one side as opposed to the other side (but is not really neutral), then you should check as follows:
active \qquad : $: X$: \qquad : \qquad : \qquad passive
or
active \qquad : \qquad : \qquad : \qquad : \qquad : ____passive

The direction toward which you check, of course, depends upon which of the two ends of the scale seem most characteristic of the thing you're judging.
If you consider the concept to be neutral on the scale, both sides of the scale equally associated with the concept, or if the scale is completely irrelevant, unrelated to the concept, then you should
piace your check-mark in the middle space:
safe \qquad : \qquad : \qquad : \qquad : \qquad : \qquad dangerous

IMPORTANT: (I) Place your check-marks in the middle of spaces, not on the boundaries:

(2) Be sure you check every scale for every conceptdo not omit any.
(3) Never put more than one check-mark on a single scale.

Sometimes you may feel as though you've had the same item beiore on the test. This will not be the case, so do not look back. and forth throigh the items. Do not try to remember how you checked similar items eanlier in the test. Make each item a spearate and Independent judgment. Work at rairly high speed through this test. Do not worry or puzzie over individual items. It is your first impressions, the immediate "feelings" about the items, that we want. On the other hand, please do not be carel ar. because we wont your true impiessions.

heaver \qquad : \qquad : \qquad : \qquad : \qquad : \qquad $:$ \qquad light
sad \qquad : \qquad : \qquad : \qquad $:$: \qquad happy
active \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : \qquad passive
hard \qquad : \qquad
\qquad : \qquad : :____soft
good \qquad : \qquad $:$: : $:$ bad slow \qquad : \qquad : \qquad : \qquad : : fast
difficult \qquad $: \quad:$: : : :__ : \qquad easy
feminine \qquad : $:$ $:$ $: \quad$: : $: \quad$ _ m masculine
heavenly \qquad : : : :___ \qquad : \qquad hellish
cold
\qquad : \qquad : \qquad : \qquad : \qquad : _hot
negative \qquad : : \qquad :___ : $: \quad$ _ positive
awful \qquad : \qquad : $: \quad$: : \qquad : \qquad nice
optimistic \qquad $:$ \qquad : \qquad : \qquad $:$ \qquad : \qquad :____ pessimistic weak \qquad : \qquad : \qquad : : \qquad $:$ \qquad strong

IE TEACHER EXPRESSES OR LECTURES ABOUT HER OWN IDEAS OR KNOWLEDGE
heavy \qquad : \qquad
\qquad : \qquad : \qquad : \qquad : _ Iight sad \qquad : \qquad : \qquad : \qquad happy active \qquad : \qquad : \qquad : : \qquad passive hard \qquad : \qquad $: \quad$: : : : : soft
good \qquad : \qquad $: \quad$: \qquad : _ . $:$ \qquad : \qquad bad slow \qquad : \qquad $:$ \qquad : \qquad : \qquad :
 : \qquad fast
difficult \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : easy
feminine \qquad : $:-$ \qquad : \qquad : \qquad masculine heavenly \qquad : \qquad : \qquad : : $:$ hellish
\qquad
\qquad : \qquad $:$ \square $:$ \qquad hot
negative \qquad : \qquad : \qquad : \qquad : positive awful \qquad : \qquad : \qquad : : \qquad nice
optimistic \qquad : \qquad : : : : \qquad pess_mistic weak \qquad : \qquad $: \quad$: \qquad : \qquad strong

ACHING CHILDREN MATHEMATICS
heavy \qquad : \qquad : \qquad : \qquad $: \quad$: \qquad $: \quad 1$ light sad \qquad :___ \qquad : \qquad : \qquad happy
active \qquad : \qquad - \qquad : \qquad : \qquad : \qquad
hard \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : \qquad soft
good \qquad : \qquad
\qquad : \qquad : \qquad : : bad slow \qquad : \qquad : \qquad : \qquad : : \qquad fast
difficult \qquad : \qquad : \qquad : \qquad : \qquad : \qquad easy
feminine \qquad : \qquad : \qquad : \qquad : \qquad : \qquad masculine
heavenly \qquad : \qquad :_____ \qquad : \qquad : \qquad hellish

> cold
\qquad : \qquad : \qquad : \qquad : \qquad
\qquad hot
negative \qquad $:$ \qquad : \qquad : \qquad $: \quad$ P positive
awful \qquad : \qquad $:$ \qquad : \qquad : \qquad nice
optimistic \qquad : \qquad : : \qquad : \qquad pessimistic weak \qquad : \qquad : \qquad : \qquad : \qquad strong

EACHIG CHILDREN SOCIAL STUDIES
heavy \qquad : \qquad : : : \qquad : \square IIght sad \qquad : \qquad : \qquad : \qquad : \qquad : \qquad $:$ \qquad happy
active \qquad : \qquad : \qquad : \qquad : \qquad
\qquad $:$ passive
hard \qquad $:$: : \qquad :___ \qquad $:$ \qquad sof
good \qquad : \qquad : \qquad $: \quad$: \qquad : bad slow \qquad $:$ \qquad : \qquad : \qquad : \qquad : \qquad : \qquad fast
difficult \qquad $:$ \qquad $:$ \qquad : : : $: \quad$ ea easy
feminine \qquad : \qquad : : : :___ : \qquad masculine
heaveniy \qquad : \qquad : \qquad : \qquad : \qquad hellish
cold \qquad : \qquad :___: \qquad :___ \qquad hot
negative \qquad : \qquad : \qquad : \qquad
\qquad : \qquad positive
awful \qquad : \qquad : \qquad : \qquad : \qquad : \qquad $: \quad$ nice
optimistic \qquad : \qquad : :____ : : \qquad pessimistic weak \qquad : \qquad : \qquad : \qquad : \qquad strong
heavy \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : \qquad light
sad \qquad : \qquad : \qquad ; : \qquad : \qquad happy active \qquad : \qquad : \qquad : \qquad : \qquad
\qquad : \qquad passive
hard \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : \qquad soft
good \qquad : : \qquad : \qquad :____ : bad slow \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : \qquad fast
difficult \qquad : \qquad : \qquad : \qquad : \qquad : \qquad easy
feminine \qquad : \qquad : \qquad : \qquad : \qquad masculine
heavenly \qquad : \qquad : \qquad : \qquad : \qquad : \qquad hellish cold \qquad : \qquad : \qquad
\qquad : \qquad : \qquad : \qquad hot
negative \qquad : \qquad : \qquad : : \qquad : positive awful \qquad : \qquad : \qquad : \qquad
\qquad : \qquad nice
optimistic \qquad : \qquad : \qquad : \qquad : \qquad : \qquad $:$ \qquad pessimistic
weak \qquad : \qquad $:$ \qquad : \qquad $: \quad$ S strong
heavy \qquad : \qquad : \qquad
\qquad : \qquad : \qquad light
sad \qquad : \qquad : \qquad : \qquad : \qquad : \qquad
\qquad happy
active \qquad : \qquad : : \qquad : \qquad passive hard \qquad : \qquad : \qquad : \qquad
\qquad $: \quad$: \qquad soft
good \qquad : \qquad
\qquad $:$ \qquad : \qquad : \qquad : \qquad bad
slow \qquad 5 \qquad : : \qquad : \qquad rast
difficult \qquad : \qquad : \qquad : \qquad
\qquad : \qquad easy
feminine \qquad : \qquad
\qquad $:$ \qquad : \qquad masculine
heavenly \qquad : \qquad : \qquad : \square hellish cold \qquad : \qquad
\qquad : \qquad : \qquad : \qquad hot
negative \qquad : \qquad : \qquad : \qquad : \qquad : \qquad : ___ positive awful \qquad : \qquad : \qquad : \qquad :___nice
optimistic \qquad :____ \qquad : : $:$ $:$ pessumistic weak \qquad : \qquad : \qquad : \qquad : \qquad $:$ strong
meacher asks questions to stimulate puril participaiton in dectsion-making
heavy \qquad : \qquad :___ : \qquad : \qquad light
sad \qquad : \qquad : \qquad : \qquad : \qquad $:$ \qquad : \qquad happy
active \qquad $:$ \qquad : \qquad : \qquad : \qquad : \qquad : \qquad hard \qquad : \qquad : \qquad : \qquad
\qquad : \qquad : \qquad soft
good \qquad : \qquad $:$ \qquad : \qquad
\qquad : \qquad bad slow \qquad : \qquad : \qquad : \qquad :____ iast
difficult \qquad : \qquad : \qquad $:$ \qquad : \qquad : \qquad easy
feminine \qquad : \qquad $:$ \qquad
\qquad :___ \square masculine
heavenly \qquad : \qquad : \qquad :____ \qquad : $: \quad h$ hellish

$$
\operatorname{cold}
$$

\qquad : \qquad : $: \quad$: \qquad : \qquad hot
negative \qquad : $:$ $:$: \qquad $: \quad$ positive awful \qquad : : : : \qquad :___nice
optimistic \qquad : \qquad : \qquad : \qquad :
 $:$ \qquad pessimistic weak \qquad : :___ \qquad : \qquad : streng
$A N G U A G E A R T S$

CIETCE

sed \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad happur
actire \qquad $=$ \qquad $=$ \qquad
\qquad $=$ \qquad $=$ \qquad passize
narid \qquad $=$ \qquad $:$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=\quad \operatorname{sofit}$
grod \qquad $=$ \qquad
\qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad bad Slow \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad rast
difficult \qquad $=$ \qquad $=$ \qquad $:$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad eass
feminine \qquad $:$ \qquad $:$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad $=$ \qquad Easculine heavenly \qquad $=$ \qquad $:$ $: \quad$: \qquad $:$ \qquad : \qquad hellish
cold
\qquad : \qquad $:$ \qquad $=$ $=$ \qquad hot
negative \qquad $=$ \qquad : \qquad : \qquad : \qquad $=$ \qquad $:$ \qquad positive awful \qquad $=$ \qquad : \qquad : \qquad : \qquad : _ nice
optimistic \qquad : \qquad : \qquad : \qquad : \qquad $:$ \qquad : \qquad pessimistic weak \qquad $:$ \qquad : \qquad
\qquad : \qquad
\qquad : \qquad strong

 mothentice, science, social studies, teaching children, and teaching children in each of the ahove arians; Concept meaning and sesantic space; congruity theory; predicting concept meaning; Semantic differential, Semantic differentiel factor steveture with educational copeepts; Semantic differential ceale performace.
DOMTEFLERS

ambiract

This project inciudes four studis's. Factor analyses including orthognal rotations were performed on 3414 X 14 correiation matrices. Each matrix stemed from semantic differential (SD) data using If adjective scales. Concepts and Ss yere associated with elementary education. Factor. I was the ovaluativa dimenion, Factor II was tagged as denoting intellectuml or acadenic vigor,-Factor III wat an activity dinension.' The polarity of the seale manculine-feminine switched from concept to concept. It seons unwise; to ansume mD scale has a "known" factoriai content or polarity. Elach time. an SD is usea factor analysis should be done.

Attitudes torard four acadenic disciplines, together with teaching children in each field were measured by Factor I scores. Mean attitude toward each concept was higher than neutrailty. No differences existed among attituies toward the four disciplines. Teaching children evoked a higher attitude measure than any concept of the form teaching children X. Attitude toward mathematics was related to an achievement in mathematics variable.

The comgruity principle was verified with these data although the prediction formule would have been improved by adding a constant between -0.3 and -0.2 scale units.

Connotative meanings and distances between concept meanings were derived under the assumption that the semantic space is Euciidean.

[^0]: * See "The Factor Analysis Study" in this Report.

